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SUMMARY

The thesis is a study of the dynamic aspects of a hemispherical
shell with various edge conditions and subjected to various types of
loading.

By using the modal analysis, closed=-form solutions are obtained
for the axisymmetric dynamic response of hemispherical shells with
roller~hinged edges and roller-clamped edges. By applying a harmonic
ring load to withhold the motion either along the longitudinal direction
of the roller-hinged edge or along the transverse direction of the
roller-clamped edge, the eigenfunctions for the hinged and clamped
edges, respectively, are obtained. Numerical results for free vibra-
tions and the dynamic response of the shell are obtained and discussed
in detail, Finally, it is shown that this analysis can equally well
be carried out by applying the mode-acceleration method of Williams.

Although the analysis carried out for a problem with external
dynamic loading is similar to the analysis of a problem with thermal
loading, the inhomogeneous boundary conditions in the displacements
arising from the thermal effect must be considered in the latter
problem. To take care of this inhomogeneity, a particular term is added
to the formal solution so that the resulting solution satisfies the
governing differential equations and the boundary conditions.

To provide an example of the application of this prucedure to

hemispherical shells, the free vibration of an elastic cylinder with a



xi

hemispherical shell bottom is studied. Comparison made with respect to
a clamped~clamped cylinder shows that the effect of the bottom is
larger for thicker cylinders and particularly significant when the
cylinder is short.

Finally, an investigation of the random excitation of thin
elastic shells is made. The problem is discussed in detail for
hemispherical shells with roller-hinged and roller-clamped edges.
Numerical results are obtained for a hemispherical shell with a
roller-clamped edge when the shell is subjected to a non-stationary
separable random process uniformly distributed over the shell surface.,

Both wide-~band and band-limited power spectral densities are included.



CHAPTER I
INTRODUCTION

By using the inextensional theory to investigate the acoustic
behavior of bells, the vibration of thin spherical shells was first
studied by Lord Rayleigh [1, 2] in 1881. 1In 1882, Lamb [3] first
determined the natural frequencies of a closed spherical monocoque
shell. Love [4] in 1888 developed the general theory for small free
vibrations of thin elastic spherical shells@ With the use of a
technique introduced by Van der Neut [5], fhe equations of the classical
dynamic bending theory of elastic spherical shells was derived by
Federhofer [6]. Using essentially the same technique, uncoupled
equations which include the effects of transverse shear deformation
and rotatory inertia have been derived by Kalnins [7] for shallow
spherical shells and extended by Prasad [8] to nonshallow spherical
shells. By using the approach from Berry [9], free axisymmetric
vibrations were studied by Naghdi and Kalnins [10], where the natural
irequencies for free-edged hemispherical shells with thickness-radius
ratios 'arge:r than ).0]1 nave beer obtained. The frequencs equations
corresponding to spherical shells and hemispherical shells are
discussed by Kalnins in [11]. Hwang [12] obtained the natural fre-
quencies for a hemispherical shell using a method similar to that

used by Baker [13] to obtain the frequencies for a complete spherical



shell, neglecting the bending effects. In [14] Kalnins presents a
numerical method for the calculation of the natural frequencies and
normal modes of arbitrary rotationally symmetric shells, The non-
symmetric dynamic problems of elastic spherical shells have been
studied by Silbiger [15] and then by Wilkinson and Kalnins [16] . Baker,
Hu, and Jackson [17] have studied the axisymmetrically dynamic
response'of a complete spherical shell by using, basically, the mem-
brane theory. Hwang [18] has obtained the experimental results of a
thin hemispherical shell having a free edge.

The present study is concerned with the dynamic aspects of a
hemispherical shell with various edge conditions and subjected to
dynamic, thermal and random loadings.

In order to derive the set of governing equations in a more
complete fashion, the assumption of seven stress-displacement rela-
tions has been used. The variational theorem of the energy functional
yields the stress differential equations of motion, which include the
rotatory inertia £erms and the effect from a visco-elastic foundation,
and ten stress-displacement relations, which take into account the
transverse shear deformation and a thermal input.

Solutions corresponding to various boundary conditions a-e
sought for the axisymmetric response to a dynamic load and to a2
thermal load. The results may be used foi many practical problems
such as the response of a hemispherical nose of a space vehicle during
its re-entry when it is subjected to both a high temperature gradient

and an atmospheric pressure acting on the shell surface. Furthermore,
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the free vibration of an elastic cylinder with an elastic hemispherical
bottom is investigated. Finally, the response of a hemispherical shell

to a random excitation is investigated by use of a modal analysis.
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CHAPTER II
BASLC EQUATIONS FOR SPHERICAL SHELLS

To derive a set of governing equations for spherical shells
that are more complete than those usually used the seven components
of strain proposed by Reissner [1] are used. A linear distribution
of 9°, which is defined to be the rotation ot the surface element around
the normal, has beern assumed insteac of the constant distribution
used in [llﬁ Furthermore, the potential energy from a visco-elastic
foundation, the kinetic energy, and the thermal strain energy of the
shell have been added to the energy functional considered by Reissner
[2] and Naghdi {3].

The geometry and sign conventions of the shell are shown in

Figure 1. The displacement ot a point in space has the form
- - e + - w»»- .
i] U¢e¢ Ueee + Wen (2.1)

s

where E;, Eé, and e  are base vectors and U¢, Ugy, anid W are displace=
ments along the directions of the base vectors.

Using the orthogonal curvilinear coordinate system ¢, 8, and
t, where ¢ and 6 are the angular spherical coordinates of a point on
the middle surface of the shell and ¢ is the distance measured along

the outward normal from the middle surface the seven components of

strain are deduced from [ 1], They are '
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Figure 1. Geometry and Sign Conventions of the Shell
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Here a is the principal radius of curvature of the middle surface of the

spherical shell, 9° the rotation of the surface element around the normal,

and

A, =1+ : (2.3)
a

The displacements are approximated in the following manner:
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U¢-u¢+;8¢

(2.4)
Ue = Uy + ;Be

W=w+w + % z2w"

Q° = ° + '

In equations (2.4) B¢ and 86 are the changes of slope of the normal
to the middle surface along the coordinates ¢ and 6, respectively,
u¢, Ugs and v are the components of displacements of a point on the
middle surface, and w® is the rotation of the middle surface around the
normal,

Primes indicate differentiation with respect to z.

By substituting equations (2.4) into equations (2.2) one
obtains

|
=1 ¢ = O al_“-z .‘!.:L/ PP
e¢ =\, + cK¢ +5e ] {2.5)
A J
-LJ [+ * -]—' 2_‘_’_'_'_l
€g \ee + cKe + 2 4 2 f
A
[ SN

° - zu'
A
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0 ==) L4y (2.6)
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and

The

are of the

(N

(N6¢’ Ne, Ve)

(M,

W
K¢ + =
wl
Ke + by
L.
a 36
aB
L 2 . B Cos ¢
a Sin ¢ |26 ¢
1,28
a3
9B
1 49'- SeCos ¢
a Sin ¢ 36

12

(2.7)

forces and moments per unit length on the middle surface

following form:

N
$6

M¢8

» V) =

h/2

)= ]

-h/2

h/2

[ (o

-h/2

h/2
(t
-h/2

(0., 1

¢

6 T90° TéT

04 %0* Toz

p0) FAAE

) Adz

) A dg

(2.8)
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h/2
(Me¢, Me) = {h/z (Te¢, Te) CAch

where G4 Og are the normal stresses, T the shearing

46* T¢r* ez

6 the stress resultants, M¢, Me, M¢e and

Me¢ the stress couples, a.ndV¢ améVé the transverse shear stress

stresses, N¢, Ne, N¢6 and Ne

resultants,

As usual, the components of stress are considered to vary

linearly throughout the thickness of the shell., That is

(04" (8> (o (2.9a)
| |
% 82 %2
= + | z
Tee 3 by
1 T6¢J 8y Lbh)
and
a 2
_ 5 ( g L {f + + - -
T T e 1l = (e - p, *H +p, *H (2o9b)
L ¢ $ ] ¢
8 2 [
4 1 +
T = LV 1= -—-—) - p, *H, +p, * H
] i
14 AC h/2 e 6 0
k S S 2
g = 2. L 20 -5
a2 h h? h/2



14

]
PR e
+ 2 pn Hn + P, Hn

where 30 8y4 83, 8y, 4, by by, b39 b, are to be determined by
using equations (2.8), and the functions S1 and SZ are still un-

+ - + hand + s ) «
determined. p¢ and p¢9 Py and Pye and P and p_ are, respectively,
the values of T¢C9 Tore and OC at the outer and inner surfaces of

the shell., The coefficient k, is a distinguishing factor between the

contribution of transverse shear deformation and normal stress,

Finally
2|/ )
H;=H+= 12 8 o3 |=te L+ ) A (2.9¢)
¢ h/2 h/2 22 a,
2
He = Hy = (142 -fe o3 (e 1ol L
¢ h/2 h/2 2| a
\
|
3 2
+ P
H o=4(143 E_), %4 5 1 +‘ﬁw} 1
“ 2 |n/2 h/2 2a] a2
3 N2
H = q1- %-(mﬁwﬂ+ i/ P__ hm] 1
h/2 h/2 2a | ACZ

are obtained by using the stress equilibrium equations of elasticity
in the 7 plame together with the prescribed boundary conditions for

t,.5 T._, and oc[dl*«

$c” 6¢

*Page 93 of reference [4].




15

By substituting equations (2.9a), (2.9b), (2.9c) into equations

(2.8), a; sees gy and bl vo00 b4 are obtained as follows:

e 31» N, b, M, (2.10)
a2 ) 1 Ne b2 _12 Me
a, h Noo by h3 Myo |
Y Yoo b Yoe

% a j - 3/2

With the rotary inertia, energy from a viscoelastic foundation,
and thermal strain energy added, the variation of the energy functional

in the action integral form is

]

t
6A = § j 1 !{?’ ( o¢e¢ + 0g€q + °C€C + T¢GY¢9 + T9¢Y9¢ (2,11)
t
0

au .\ 2 fau\‘z
0
..‘.2 +‘¢.m..,

at lae & |at

Njo

TocYor t Tec*e;/

A_2a?sin ¢ d¢dedzdt

- T .

)
|
o '

P

+
vt o+

: 2 2 2
e (u¢ +u+w ) + (p¢ ¢

]
O
S
[a}
[
S
—

+ +
PeUg

n |2

11 +-": + (p¢U¢ + pglUg + pnw ) (1 = 2al
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) tl 1}1,""2
¢+ aSin ¢d¢dadt =« § | U ¢+ U
*e { $ “h/2 “a’n ¥ nele
[o]
L '
+ TnQW) 1+ 2] de agdede + [ ff;\f
t S
[o]
du Sue w
o -2 SU 4+ memn 8u 4+ == Jw | a?Sin ¢dédodt
i ¢ st 3t

where V denotes the volume, t is the time, S indicates that part of

+ + 4+ = = =
the surface where the surface loads p¢, Pgs Pps qu9 Pgs P, are
prescribed, U;, U;, W+, U;, U;, ' designate the displacements U¢, Ue,

and W at the outer and inner surfaces, respectively, and kf and Ag

are the elastic parameter and viscous damping parameter, respectively,
for the foundation. It has been assumed that k; and Af are the same

in the three directions ¢, 6 and ¢. The third integral represents

the potential of the edge loads and the subscripts n and t refer to

the normal and tangential directions on the boundary faces. xhe

stress resultants and the stress couples due to edge stresses, Nn’

N ¢ s Vs My, and Mnt’ are defined similarly tc those in equations (2.8).
The last integral represents the non-conservative energy due to the

damping of the foundation*. We note that

Ih/Z )
Q. = T_ A a®dg (2.12)
olhe MG

*Page 56 of reference [5].



and furthermore thatt*

2 .2y (0¢°6 + 040, + 00 ) (2.13)

4 6L

= 1 2 442
r [c¢ oe + GC

0 2

. 2 2
+ 2(1+v) (T¢e Te¢ + Tor + Tor )}

* .
+a.0 (o, +0,+ 0,

is the complementary-energy density for Hookean materials, where t
denotes time, a the coefficient of linear expansion, e* the tempera~-
ture, E the Young's modulus, and v is the Poisson's ratio.

Equation (2.11) is now integrated with respect to I through-
out the thickness of the shell., Next the variation indicated in
equation (2.11) is performed., Then the coefficients of the variational
changes in the deformations, stress resultants and stress couples
are set equal to zerd®**, If quadratic and higher order terms in h/a

are neglected, in the case where o, = 0 and W = w a system of

4
equations governing the behavior of spherical shells is obtained.
They may be grouped in two parts. First there are the following

relations:

*%Reference [6], page 124,

***Principle of stationary action, pp. 159-162 of reference (71,
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with

* .
a = i (h/a)2 , 0 o™ f O*dc s e*l = f e*;dc
12 -h/2 “h/2
b+t —_— - h  +.+ -
my =7 (PHy +pHD s mg =3 (pgHy + pglly)

and

Next there are the equations of motion. They are

N 3N
2+ 8¢ cosec ¢ + (N, = Ng) Cot ¢ + V,
3¢ 3¢
32y 32g du
=a phkl-m-i+phak2——“‘+kfu¢+x -4
at at? at
aN aN
—38 4 8 cosec ¢ + N Cot ¢ + V. + Ny Cot ¢

3¢ 236 v8

’-l
\0

(2,15)

(2.16)

(2.17)




92u 328

20

3ue

= - "‘“"g R -
a phkl + phak2 + kfue + A ape

at2 at?

it

8V¢ BVe
—ic 4 e COsEC § + V¢Cot $ - (N¢ + Ne)
3¢ 96
2
= a phkl-a-ﬂ-!-kfwd-)‘f =~ ap
at it n

oM oM
«-—-—‘k+‘-—=e-$-Cosec¢+(M -M)Cot ¢ =a(V, =m,)
3¢ 26 ¢ G ¢ ¢
328, c_ 3%u
- i oh3a kK —2 oy Lt
12 T .2 a 2
ot 3t
oM M
_..22.+—-91Cosec¢+(n + M )Cot¢-a(Ve-me)
Y 26 % ¢0
328 ¢ 3%u
12 F a2 2 a2

N - N -l(M

40 " Nog =3 WMoy ~ Myo) = O*

where

*The corresponding sixth equilibrium equation derived in [8] reads

1
Noo = Nog = 3 Mgy = Mye)
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k, =14+ a, k, =2a (2.,18)

T
and
] ’
1
- - +., s
P 4 | Pgllg = Pyl
+4+ -
Pn ann - ann
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CHAPTER III

FORMULATION OF PROBLEMS FOR THE

AXISYMMETRIC VIBRATION OF HEMISPHERICAL SHELLS

By setting k. = k2 =ec = ke = Ay =

(2,17) and taking the 6=-variation to be zero, one obtains the

= 1 ip equations

governing equations of torsionless motion for the axisymmetric
deformation of a spherical shell without the effect from the

transverse shear deformation. They are

N 3%u

& + (N¢ - Ne) Cot ¢ = V¢ = pha —t ap (3.1)
Y} at2 ¢

av 2.

=2 . V¢COt ¢ + (N¢ + Ne) = pha Lt ap,

3 at?

3M¢
;:n + (M¢ - Mg) Cot ¢ = a.V¢

0

Here the inward normal direction is considered to be positive. The

stress, strain, and displacement relations are

*
anﬁo

(3.2)
1=v? ¢ - lev



ok

ou Ea, &
= Eh $-wl o+ v(u¢ Cot ¢ - w) | = 95
a(1-v2) || 3¢ l-v
Ea 6 *
o
N, = Eh (e, 0 + ve¢°) - 220
1ay? l-y
3 Ea 0
u a
=B (u¢Cot¢-—w)+\) —-i-w -_00,
a(1-v?) 3¢ 1-v
*
Eo 8
M¢ = - D(K¢ + er) -1
l-v
3 Ea 6 "
D u 2 (o]
== LA PR B A o4 01
a2 LY 6 32 1-v
%
Ea 6
M =-D(K _+ vk ) 01
6 l-v
9 Eo .0 *
u 2 o
O NI R L |
a? 3¢ 3¢ 392 1-v

where a_, the coefficlent of linear thermal expansion, is assumed to

09
be constant throughout the thickness of the shell and

* fh/2 *d

Oy = 6 dg ' (3.3
O Iy )
* h/2 *

0, = / 6 zdc

-h/2
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with 9* denoting the temperature.

By eliminating V¢ and substituting the stress~displacement
relations in the first and second equations of (3.1), the following
governing differential equations are obtained if & is considered

small compared to 1l:

2
al(w) + L(¥) = (1+v)w + (1=v)p = A 2“% (3.4)
at

- { [Al% + B0 ]

32w

a [LL(w-w) + (l-v)L(w)] + RILO) # 200w + A
ot

= Alpn + BlQTZ

where

L (n)?
a 12 a
. 2§1“V22 . . ao(l+v)
»
1 Eh 1 h



u, ==
¢ 20
* ) \
360 801
QTl "= g mmmm s e
9¢ ¢
20 azel*
Qu, = = 2ag, + Cot ¢ +
T2 0 3 a¢2
and
32 ° o
L(*) = (1-x2) S42 5, 3D
9x ox
with
x = Cos ¢

* *
Note that in equations (3.4), 80 and 61 may be functions of ¢ .

Boundary and Initial Conditions

The boundary conditions corresponding to the edge supports
shown in Figure 2 are

(I) Roller~clamped edge

u -ﬂ-o
.a.!’..() Lat¢- l
Y} 2

Q¢'0

]
(<,

(3.5)



(II) Roller~hinged edge

(III) Clamped edge

u¢s—a£uo
a¢

.-a..'!.'.no

¢

w=20

(IV) Hinged edge

o 3'4’-0
u =X
¢ 3

The initial conditions which will be considered are

u =w=29_

¢

du
-..n..i.-?.!-ao
at at

\

(atcb-;-

> at ¢ --;

at ¢ = —
( 2

Pat t=0
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(3.6)

3.7)

(3.8)

(3.9
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The general solutions of equations '3.4) governing the dis-
placements of spherical shells subjected to surface loading and/or
thermal shock will include the following three parts:

(A) Homogeneous solution.

(B) Particular solution corresponding to surface loading

alone,

(C) Particular solution corresponding to thermal effect

alone.
The final solutions will be obtained by satisfying the appropriate
boundary conditions shown i1 equations (3.5) through (3.8).

It should be noted that when the thermal effect is considered,
the homogeneous stress boundary conditions expressed in terms of
displacements will become inhomogeneous boundary conditions in the

displacements.
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CHAPTER IV

DYNAMIC AND THERMAL RESPONSE

By using the modal analysis, closed form solutions are
obtained for the axisymmetric dynamic response of hemispherical
shells with roller~hinged edges and roller-clamped edges. By
applying a harmonic ring load to withhold the motion either along the
longitudinal direction of the roller-hinged edge or along the trans-
verse direction of the roller-clamped edge, the eigenfunctions for
the hinged and clamped edges are obtained. In solving the problem
including thermal loading, the inhomogeneous boundary conditions in
the displacements arising from the thermal effect must be considered.
A particular term is added to the formal solution of the problem with
homogeneous boundary conditions in the displacements such that the
resulting solution now satisfies the governing differential equations
and the boundary conditions.

The governing differential equations are those of equations

(3.4). They are

L(y) = = aL(w) + (1+v) w = (1=-v)¢ (4.1)
. 3%y f¢ f¢ 4
+ A — e A p,d¢ - B Q ¢
at2 Lg ¢ 1y ™M

LL(w) = = LL(y) = (1=v) L(w) + i%* L(y) (4.2)
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Dynamic Response of Shells Having Roller=-Clamped

and Roller-Hifged Supports

When the effect of the temperature o* 1s neglected the boundary
w
conditions (3.5) and (3.6) at ¢ = 5 are

(I) Roller-Clamped Edge

KA (4.3)

9¢

3.1 = ( (l‘ol.)

¢

392 2¢3

(II) Roller-Hinged Edge

w= 0 (406)
Ju
2 a0 4.7)
3¢

2
¥ oo (4.8)

342
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The solutions of equations (4.1) and (4,2) which satisfy the
boundary conditions (4.3) to (4.5) and (4.6) tc (4.8) corresponding
to the roller-clampec and roller-hinged edges, respectively, can be
expressec in terms of the Legendre's polynomials ir. the following forms:

bixet) = ] ¥p(t) P_(x) (4.9)
n-0.2'4|'0
or
n-1.3,5’o0

wix,t) = ] v, (6) P (x) (4.10)
n'o;nggoe
or

n-1,395,»0
where n = 0,2,4,.. corresponds to the roller-clamped case, and n =
1,3,5,.. corresponds to the roller~hinged case. From the physical view-
point, ¢ and w must be continuous functions of x and possess bounded
first derivatives. Therefore the series given irn equations (4.9) and
(4.10) will converge absolutely and uniformly.*

Substitution of equations (4.9) and (4.10) into equations (4.1)

and (4.2) yields

[ ] dZw
! {w ) L) + (1-v)P | - » —B p (4.11)
n=0,2,4,.L " [ n "] ae2 °
or
n-1.3’5,ao
1 ¢
+ug(e) LY = By = - 4 (j) p,d¢

*See Reference 1, pp. 424-429,




w
w

v | Q) o]
) {wn(t) [LL(Pn) - L(pm)J + W (t) [LL(Pn) (4.12)

n=0,2,4,.
or
n.1’3'5’it
14y A dzwn A1
+(1~v)L(P)+Z—(—«—-—»—l—P}+—xml’ = p =
n a n Gdz n ng
t
By using the Legendre's identity
L(P) = - AnPn (4.13)

with
An = n(n+l)

and considering orthogonality condition, equations (4.11) and

(4.17) become

dzwn 1 ]
rB [ = a] v+ [ang + )] v (4.14)
1 406
= 4, (2n+1) {)_ P_(&) I p,dede
dzwn 4
A " + 12(14-\») + ah ,[An - (l-v)j v (4,15)
i 1
+ Ay () + ahy Vo = A 2041 [ poP (P
0

According to the definitions after equations (3.4) and using ¢« uation

(4.9), the relations

o dP_(x)
Uy (x,t) = Wexat) dx g o (8) —Bem 5 (4.16)
X dé¢ n=0,2,4,.. dx d¢

yield



® dP (x)
u (x,t) = ) g () Mmgym” dx
¢ n=2,b,,. x dé

wo has no contribution to the response u, and is discarded from the

¢
analysis. Letting n = 0, equation (4.15) becomes

d2w0 1
A =+ 2(24)wg = Ay [P (E,1)dE
0

dt?
Equation (4.18) has a solution
A t 1

1 z
wy | sin wyoCt=1) Pn(EsT)dEdT
Awln 0 0

where

2(1+v)1 s

o

w10
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(4.17)

(4.18)

(4.19)

(4.20)

represents the breathing-mode* frequency of the roller-clamped shell.

For n = 1 equations (4,14) and (4.15) become

d2y .
A==+ (1Y, + [20 (1+v)| W
dt2
fl © J,¢(£)
= 3A P. (¢ p,dédE
1o 1770 ¢
d2w1 -
A e + 2(14) (14a)w; + 2 20 + (1+v) ¥y
de? ) ’
1

= 34 (I) PoPy (E) dE

(4.21)

*Mode shape is described by a constant normal displacement w over the

entire shell surface.
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1f a 1s small compared to 1 and equations (4.21) are rearranged, one

obtains
6% (wy=29,) ’4'},1 ( },1 ) JME) 1 )
A ' » 34, |J p Py(8)dE = 2 [ P (£ p,dedE - (4.22
d2 (wy+y.)
A L + 3(1+v)(w1+¢1)
dt?
1 1 $(E) |
= 37 é PP (E)dE + é P, (&) é p¢d¢d5§

The first of equations (4.22) can be integrated directly and the

solutions of equations (4,22) are

1 tr7
vy - 29 = -;j [ Py dr'de (4.23)
00
1 t
Wyt o S / F21(r)Sinwll(t-r)dT
Aw 0
11
where
NS
w119 = ‘/ N (4.24)

is the 1St natural frequency* for the roller-hinged case, and

*The equations for computing the natural frequencies are those of
(4.30).
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1 1 ¢ (&)
Fll - 3A1 é pn(EDT)Pl(E)dg - 2 (J) Pl(g) é p¢(4,"f)d¢d£> (4025)

1 1 ®LE) [
Fn.ulé%%ﬂ%mﬁ+%Pﬁaé %wmuaT

4

*1 and w; are then

: t
¥ = £-?‘$m;j F21(t)Sinm11(t-r)dT (4.26)
3 ‘w11 0

jt!r f
- F..(t")d+"dr.
oo U |

1 1 Lt
S ""‘f F21(T)Sinw11(t-r)d?
3A : mll 0

w

t T
+ [ [ P (t")dr'dr
00 1 :
Finally for n > 2 the equations of (4.14) and (4.15) are rearranged
to yield two uncoupled fourth-order ordinary differential equationms.
They are
d*y d2y

n
o +A ;z;~.+ A, Vo Flh(t) (4.27)

d“wn d2w
+ A

2 -
A + Aann an(t)

dect de?
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where

Aln = aAn :An - (1=v) + An + (1+3v) (4.28)

Agp =a [A (A =14v)2 = a?A 3 = 200 3(14v) + (1=v?) (A -2)

jl d2 ) 1 ¢(E)
F1a(t) = A (2n41) Ah+wa;!%@>j Py(4,t) dode
dt 0 0
- 1 1
- A+ (Hv): é Py (E,t)P_(£)dg
F, (t) = A, (20+]) A = (1-v) + A &
= n = (1l=v weomns
2n 1 ‘ n dtz.
1

. (j)’ P (E,t)P,(E)AE + A [al\n + (1+v)]

1 o(8) ?
[ P8 [ py(s,)dede
0 0 i

!
;

and
A3n = uAn(An = 1 4+v) + 2(1 + v)

Solutions of equations (4.27) may be written in terms of

convolutior integrals as




where

represent the upper and lower branches of the natural frequencies,

1

2 2.
A (wzn w

t

A2 2.
(m2n “

1 t

w2 0

2 o 1
2)
2 .1
22

respecuavely.

are shown in Figure 3,

A

A

2
In )

T UV

3
1In )

1

It is seen that the variation of thickness

1n =

t

0

1 f Sinmzn(twr)Fln(r)dr g

t

J sinw

0

~e | Sinwzn(tnr)an(t)dt

2 L
n ¥t (A" - 4hy )

2 o
n 4A2n)

| Sinw, (t-0)F) (1)dr

t“T)an(T)dT

has very little effect on the upper branch frequencies,

the lower branch frequencies change significantly as the thickness

of the shell increases, particularly at the higher modes.

Amlnz and xw2n2 are plotted for SA- 0.01, 0.02, and 0.05 and

However,

In

addition, the magnitudes of the lower branch frequencies are not

bounded for the higher modes.

by membrane theory.

This contradicts the results obtained

38

(4.29)

(4.30)
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The final solutions for the displacements are

o dPn(x)
uy == y Y () =P 1=x2 (4.31)
n=2,4,,. dx
or
n‘193§5900

W= ) w, (t) P (x)
n=0,2.4,..
or
n=1,3,5,..

Free Vibration of Clamped Shells

The boundary conditions for the present case are

u¢-3:—£-0
9¢
v .  at ¢ el (4.32)
T 2
w=20

The solution for the free vibration of the shell way Sc
obtained by consideration of the following harmonic edge load acting

on a shell having a roller-clamped support:

(4.33)

Substituting equations (4.33) intc equations (4.19) and (4.27)
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with n being even integers, the steady state solution becomes

AR24(1=v) ® (20+1) Aﬂzuﬁn+(1vv)
O A@2-uy)?)  me2,4.6,.. AZ(20p,?) (R2-up,?)

(4.34)

¢ Pn(o) Pn(x) e 19t

The last condition given ir equations (4.32) is applied to

equation (4.34) and results in the following frequency equation:

r ) f
AQ24(1-v) » (2n+1) | AQ2=A_+(1=v)' i
Sh EE | SO nMCA IR e AT + v c. e e n

— § = ~ P 2(0),= 0 (4.35)
= = - 2 2. 2 s i
A(Q wlo ) n 2949@@ A (9 wln )(Q wzn ) |

The natural frequencies Q are obtaiﬁed by using ar iterative
procedure on a Burrough 220 electronic computer. The roots of
equation (4.35) are searched for between every two consecutive
kminz(iﬂl and 2 correspond to upper and lower branches, respectively).
A number of trial values of AQZ with constant increments are fed into
equation (4.35). The curves Sy, vs. \w? are plotted. The frequencies
may be obtained by interpolating between the two consecutive values of
AR2 where the corresponding values change signs. The value of n for
the series solutions is then increased until the variation of
frequencies obtained is acceptable. After the approximate values
of AQ? are obtained, a more sophisticated numerical device similar
to the method of false position may be programmed and used to search

for more accurate AR2's in the vicinities of the approximate ones.
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The first three natural frequencies for a hemispherical shell
completely clamped along its edge with & = 0,01, 0,02, and 0,05, and
n = 60, obtained by interpolation, are listed in Table 1. The curves
Shp vs. Aw? are plotted in Figures 4 - 6, for various values of h/a.
For the case %*- 0.01, thé largest difference between the three lowest
frequencies for the roller-clamped and completely clamped is eight

percent. The first three mode shapes for a clamped shell are plotted

in Figures (7-a), (7-b), and (7-¢).

Table 1. AQ? for Completely Clamped Shells with v --%

B ao.01 b 2o.02 hoo.05
a a a
1%t Mode 0,512 0.522 0.565
nd '
279 Mode . 0.787 0.805 | 0.955
3Td Mode 0.879 , 0.940 1.462

By applying the same technique on shells with roller-hinged
edges, the natural frequencies of shells with hinged edges may be

vbtained.

Dynamic Response - Mode-Acceleration Solution

We introduce, for the present study, a method developed by
Williams [2]. In this method the governing differential equatioms

(4,1) and (4.2) are first written in the following vector form:
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H 1 3200 :
iPqu {uB} - ph S

a2 = (pg}

where fLuBl is a matrix differential operator, and where {ua} and
{pa} are the displacement and load column vectors, respectively.

Assume the displacement vector, according to Williams' method

[(3,4], to be of the form

fug(at)} = (o, (x,6)} + 2 6,(0) {ugy(x)}

j 3

where {:;} and {n 1} are solutions of
a

] Gyl = o

and

[LGB] {1 gy} + oha,2 (ugy} = 0

respectively. Here. the Ea represent the quasi-static response; and

the uuj are the normal modes of free vibration with corresponding

eigenfrequencies @

j.

evaluation of the ¢j are obtained by substituting equation (4.37)

The necessary coupling equations for the

49

(4.36)

(4.37)

(4.38)

(4.39)

intc equation (4,36) and simplifying by means ¢ equations (4,38) and

(4.39). The resulting coupled equation is

I +Q9.2¢,) {u} == {u}
PRI I LY “a

(4.40)



Multiplication of both sides of equation (4.40) by the row vector

[“ail and use of the orthogonality condition, 1i.e.,

50

3 3
- 2
s{ azl uaiuujds 813 Js’ azl ug 2 dS (4.41)

results in the following expression:

3

£ uz luui“l:;ads

;j + Qj2¢j = o e (4.42)

where S is the middle surface of the shell,

When the quasi-static solution can be obtained exactly, this
will speed up the convergence of the total solution. In general,
however, the quasi-static solution simply respresents a quasi-
equilibrium position about which the dynamic response of the shell is

distributed.

The governing differential equations are obtained from those

of (3.4) by setting Py = Py = 0, They are

L(y) = = aL(w) + (1+v)w = (1=v)y (4.43)
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a2y ¢
+ A = = B, | d
NCRERE On

L) = - Ly - Qi + AL 1)

Analysis of the present case is similar to the dynamic
loading case except that the homogeneous stress boundary conditions
expressed in terms of displacements will become inhomogeneous
boundary conditions in ~he displacements.

Assume solutions for ¢ and w of the following types:

Vv = ) ¥_(t)P_(x) + B.G, (x,t) (4.44)
n=1,3,5,., ~ " 2°1¥
or
n=0,2,4,..
W= ) w (t)P_(x) + B,G, (x,t)
n=1,3,5,., * P 21w
or
n=0,2,4,.,
where
ao(l+v)
B, =~ : (4.45)
h

Giw (x,t) and Giw (x,t) are functions to be
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determined by the boundary conditions with i = 1, 2 representing the

roller-hinged and roller-clamped boundary cases, respectively.
Substituting equations (4.44) into equations (4.43) and then

integrating over [0,1], two coupled ordinary differential equations

similar to equations (4,14) and (4.15) are obtained.

For n = 0O,

d?w jl
A ===+ 2(1+v)wy = B {Q., +H, } dt (4.46)
dt2 20 T2 v
where
o 22
Hiw = = aLL « a(l=v)L = 2(1+v) = A -“;=, Giw (4.47)
0 ! ot
[ ] | |
+ [aLL + (1+v) ]G :
1y ; n=0
Equation (4.46) has a solution
B2 t 1
wo = [ Sinw (t=-1) [ {Q, + Hy, } dgdt (4.48)
Awlo 0 0 0

The solutions for y and w for n > 1 are obtained by similar

substitutions and manipulations. They are

( t
1
¥ === < [ P (0)Sinw, (e=1)dT (4.49)
3A Wi 0

-/ g Flw(r')dt'dTé




_1 2 b .
v, = ;\- | ;: é’ Flw(r)Slnwll(t-'r)dr
t T ' '
+ é é Flw(T Yat dt
with
(1
Flw = 332{ ({ [QT2 + Hiwl] Pl(e:)dg (4,50a)
1| (&) 1
-2 é' !:(j) Qp, deaE + Hi¢1J Pl(s)ds
1
Fle = 3B, é’ [QT2 + Hiwl] P, (g)ag
;\
1 [ o) ] |
+ ({ Lé Qa0 + Hiwl} Pl(g)dgj
and

_1 ) 32
H o ==¢ L+ (l-v) = A & | G, (4.50p)
iv, 3] Btz:f iy
L
+ [oL - (1+v)] 6y, L |
| n=1

(
2

Hiw = l- <| - oLL = (l-\))GL - 2(l+\)) Y 9 ~‘ Giw
13 'L atZJ



where

ny

nw

+ [~ aLL + (1+v)1] Gy >

L

Alahy + (1+9)] é

-

1 { o (£) |

+

[ Qppdé + Hiw

0 n |

‘ Pn(s)da

sk

(4,51)

(k,52a)

i n=l
For n > 2,
= 1 J 1 ftSinm (t-7)F (7)ar
Az(“’gnz - wlnz) ) mln 0 1n nw
1
-t ftSinw (t-1)F_ (1)at L
oy O 2n ny J
1 1 ft (t-7)F (1)
= Sinw t-1)F t)drt
Az(w2n2 -y ) wyp O in nw
1 It
- == | Sinw_ (t-1)F (1)dr
Wop 0 2n nw
J' 2\ 2 03
(t) = B2(2n+l); 3t é P, () g Q3¢
N
. ) 1
+Hy ag - [ah + (14v)] [ [ap, + Hy 1P (£)dg
nJ 0 n J
[ r d2 - 1l
(t) = B,(2n+1)¢ tAn - (1-v) + 2 ;ZZJ é [Qp,* Hiwn]Pn(s)ds
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and
f( P
1 | 3
H L+ (1=v) =X —1 ¢ (4.52b)
Yn  onel L a2 | ¥
+ [aL - (1+v)] G, |
1w n=m
1 32
H, = - LL = (1=v)oL = 2(1+v) = » =— Gy
W one ‘ at2| v
N
!
+ [= aLL + (1+v)L] Gi ‘> |
“’l n=m
We shall now construct le, le, 62¢’ and G2w for each of the

following boundary cases individually:
(A) Roller-hinged case

The boundary conditions to be satisfied are

i

at ¢ = (’4053)

A

The second and third conditions result from the stress boundary

conditions



respectively.

We may satisfy the

(b)

<
L}

£
0

v, (t)P (x)
n=l§3,5,.. e

v (t)P_(x)
n=l§3,5,.. T n

1

w_ ()P _(x)
n=l§3,5,.. noon

(]

z wn(t)Pn(x)

n=1,3,5,..

Roller-clamped case

The boundary conditions

=0
Y
-3—‘1-_-0
3¢
Q=0

at ¢ = 1

conditions in (4.53) by assuming

+
o
[%]

1
&
o3
s
—
<D
o
o7
©-

+
W
]

——— + 80 \ d¢

+
|-
%

Q=
(@]

to be satisfied are

&

-

]
AR

In terms of displacements, the last of (4.55) reads

(4.5k)

(4.55)




B 9
3
2 (yaw) = - 2 - at ¢ = —
3¢3 o 30 2
(i) For
* ¥*
6, =6, (t)

equation (4.56) becomes homogeneous. Now set

-]

p o= t)P
n=2§h,6,..wn( )P (x)
w = n=0§2’h’c’wn(t)Pn(X)
(ii) For

* *

(b,56) is satisfied if

w ) n=2§h’6900¢n(t)Pn(X) * B202w(x’t)
) 1 B
= - 2 *
n=2§h,6,o.wn(t)Pn(x)- 2 = 0, x2
w= ) wn(t)Pn(x) + BG, (x,t)

n=0,2,k4,..

o7

(4.56)

(4.57)

(4.58)

(4.59)

(k,60)
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w B
1 2 *
- ) wo(t)P_(x) = &= =i g x2
n.obzbl‘bue n n 12 o 1

Numerical Examples
To provide a quantitative evaluation, numerical examples for
the response of the apex of a hemispherical shell with a roller=-

clamped edge are presented in Figures 8 through 13 using the following
types of loading:

(A) Exponentially decaying dynamic loading

(4.61)

with

a=3000 in., E = 30x106 psi, v =0.33, and p = 007298x10-31b=sec2/1n4

(B) Constant temperature distribution

The temperature is the solution to the following boundary

value problem [5,6]:

*
FXY:) 39
98 .1 2 t >0 2] i% (4.62)
o2 K, at
d
30* * h
.,W--L-QO t >0 g =
Y K 2
Cc
3% -0 t>0 ;= ~'%
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0% = 0

t=0 |g] <3

The solution for this problem is [7]

Q*K hQ* !

p* 24y 4 0
K h K,
2.

1 ‘g 1|2
2 =%y
1h
I
(=1)n :

*

-4
6

tK, |

. _ (
exp|-n2n2 —=|Cos Inn
| 2|08
1 h |

i

-4
h

*
Finally, values of 60 and 91 may be calculated from

equations {(3.3). They are
*
90 = Rét
* o0
n=1’3'-0 nl’
with
*
Q,h3
R = 0 R, =R 2§
1 24K 2 1 g4
c
K *K
R, = g2 2 R, = R
3 =" A
h2 K,

The results are plotted in Figures 11, 12, and 13.

B*, shown in these figures is defined as

2.4
Kd a

62

(4.63)
O
.1.)(
2!
(4.64)
(4.65)
The symbol,
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Conclusions

(A) The variation of shell thickness has very little effect
on the upper branch frequencies for hemispherical shells having roller-
clamped edges and roller-hinged edges. However, lower branch fre-
quencies are affected sionificantly as the shell thickness increases.
Furthermore, the lower branch frequencies for roller-clamped and
roller-hinged shells are not bounded. This contradicts the results
obtained according to membrane theory given in {8].

(B) The natural frequencies of a shell completely clamped
approach the frequencies of a roller-clamped shell when the thickness
of the shell decreases.,

(C) The response of a hemispherical shell to an exponentially
decaying dynamic loading shows that, except for loading with rather
short time duration, quasi-static response in general provides an
average response. Hence when an exact solution can be obtained for
the quasi-static part, the mode-acceleration method has a definite
advantage over the usual modal analysis.

(D) The response of a shell subjected to a uniformly dis-
tributed temperature input shows that the quasi-static results never
react a definite value but increase with respect to time; and the
dynamic solution oscillates about the quasi=static valﬁe,

(E) 1In the present situation, the thermal conditions lead,
according to equation (4,64), to an in-plane force which is linear

in time, and to a thermal moment that reaches its steady state in a
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short time period. The thermal response solution thus has the tendency
to oscillate closely about the corresponding quasi-static solution,

(F) The thermal stress obtained in the roller-clamped shell
is the evidence of the existence of thermally induced vibration.b The
customary quasi-static thermal problem for this case displays no

thermal stress response. It gives only a free expansion of the shell,
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CHAPTER V

AXISYMMETRIC VIBRATION OF AN ELASTIC CYLINDER

WITH A HEMISPHERICAL SHELL BOTTOM

Recent investigations of shell vibrations are limited mostly
to shells of specific, simple configurations such as cylindrical and
spherical., The dynamic analysis of cylindrical shells can be found in
[1,2,3]. The dynamic analysis of spherical shells can be found in
(4,5,6]. For the analysis of composite shells we mention here that
Coale and Nagano [7] have considered the flexibility of a cylindrical-
hemispherical tank for the analysis of liquid sloshing. Only a
membrane theory was used,

The present study is concerned with the axisymmetric vibration
of a cylindrical shell with a hemispherical shell bottom. The

equations resulting from linear bending theory are used.

General Formulation and Approach

Due to the difference in the geometric structure of the shell
components, it is advantageous to use different coordinate systems
for each portion of the shell. The geometry and the coordinate systems
are shown in Figure 14, The equations of motion for each part may

be written in the following general forms:

(Lyg) fugh +oh () = {a ] (5.1)

and
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i *} N *h* . * _
,I.‘ae | {ui 0 {ui } =0 (5.2)
*
- h
a
L w*°
y
B . Mo
: i g
Q-0 Mgrv e
Q Q
a w u¢ = i‘g
h .o 3¢
b

Figure 14. Geometry and the Edge Effects

where La and La are spatial, differential operators, uy and u; are

8 B i

displacements and the q, are the load components, which include the
i

unknown moment M0 and unknown shear Q0 arising at the junction of the

two shell configurations.

The motion of the system is assumed to be harmonic, or

- iwt
ui Ui e (503)
- fwt
Mo M e
iwt
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First, the general solution for each portion is obtained, and all
boundary conditions except those at the junction are satisfied. The
support conditions at the junction are shown in Figure 14, The require-
ment that the deformation be compatible along the junction of the shell

segments then results in the homogeneous set of algebraic equations

a a,, q
o 12y © - {0} (5.4)
azy aZZJ M

involving the unknown amplitudes aiandiﬁ of the shear and moment,
respectively. The elements aij of the coefficient matrix contain the
frequency w as a parameter., The frequency equation is obtained by
equating the coefficient determinant to zero. The numerical deter-
mination of the frequencies is accomplished by means of an iterative

procedure,

The Cylindrical Shell

The equation for the axisymmetric motion of a cylindrical
shell, when the longitudinal inertia is neglected and when the in-

plane axial force is zero, is [1]

* *, % *
N %,k o2
0w + E*h w* + e h a w_, - 0 (5.5)
ay*  Dp*a2 p* 3t2

The geometry and terminology are apparent from Figure 14. The

assumption of harmonic motion of the form
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* .
w (y, t) = w(y)elot (5.6)
results in
o ®
S__Y;-A‘Ow.o (5.7)
dy"
The solution of equation (5.7) is
(5.8)

*
w(y) = A Cost Ay + B Sint A\*y + ¢ Cos A"y + D Sin A*y

with
* % *, %
* Eh
A"‘-% wz--_;'"“‘
D D a2

Two of the integration constants may be expressed in terms of the

other two constants by using the boundary conditions along y = &,

with the result

C=a(2)A + B(2)B (5.9)

D= y(2)A + z(2)B

where, for a shell clamped at y = £

%* * * *
a(2) = = Cosh A 2 Cos A £ +Sinh A2 Sin X 2

* * * *
B(L) = - Sinh A 2 Cos A £ +Cosh XA 2 Sin A 2
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* * * *
y(2) = = Sint A 2Cos A & = Cost A & Sin A 2

* * % *
£(L) = = Cost. A £ Cos A £ = Sink A & Sin A 2

- M iwt
Myy(o, t) Ny(0)e (5.10)
i
Q(0, £) = g (0)e™"
The application of equations (5.10) to (5.8) in conjunction with

equations (5.9) results in the general solution for the vibration of

the cylindrical part in terms of the unknowns M. and QO’ i.e,

|

The boundary conditions along y = 0 are
0
|

fot |
wiy, t) = My(0)e wt gcnm*y) + Cy,8(2*y) (5.11)

| * !
+Qy(0el®t ¢ £(\y) + €y

where

|

* * * *

£(A y) = Cosh A y+ a(R) Cos A y + y(&) Sin ) y (5.12)
* * * *

8(Ay) = Sinh Ay + B(2) Cos A y + z(L) Sin A y

and
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- B(%

¢,y - u_i_éﬁi , Cip = - -5;)- (5.13)
Ax"2 ax"3

c . mAzad) R 1))

21 *s ’ 22 %2
Al AX

8= D'[1 - a(2) - £(8) + a(C(R) - y(LB)]

Hemispherical Bulkhead

The equations of motion are those of (4.1)

L(Y) = = aL(w) + (1+v)w = (1-v)y (5.14)

LL(w) = = LL(y) + (1=-v)L(w) + &fg L(y)

2

- 2(1+\a}‘W _ i‘ W + A P,
o @ 3t aph

where the in-plane inertia term is neglected and

2 201 42
-1 A a(l-y) (5.15)

’ =P
12. E

(Y

a

2 .
L(*) = (1-x?) () 2x 2L and x = Cos ¢
ax? 9x
For w the boundary conditions corresponding to the simply supported
case are prescribed. Considering the motion of the shell to be

harmonic,

V(x, t) mel T 3P (x) (5.16)
n=0
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w(x, t) = eiwt Z AP (x)
n=g 0D
Equations (5,14) then become
- [(1~-v)] - An] Bn + [aAn + (1+v) ] A =0 (5.17)

An[(1+v) + ah_] B + {- Aw? + 2(1+v)

+ aAn[An - (1-v) ]} A

1

A
= - (2n+1) =~ [ p P (£)dE
oh 0 nn

where An = n(n+l). The transverse loading may be written as

-]l =2
P, = Q (-0}~ -M, {£-0} (5.18)
Here {x—-O}“1 and {x—O}'2 are singular functions resulting in

1 '
/ PP (E)dE = QP (0) +4P (0) (5.19)

0
where the prime denotes differentiation with respect to £. The
substitution of equation (5.19) into equation (5.18) and the subse-
quent simultaneous solution of equations (5.17) result in the

expressions
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A =~ a, [Pn(O) Q, + Pn'(O) MO] (5.20)

Bn - aznAn

for the coefficients An and B . Here
n

agn = 3= [(A~v) - ] (2n+1) (5.21)
Ky
anad
. - uAn + 14v
S S
with
K = oh {- Aw? + 2(1+v) - ah [An - (1-v)]2 (5.22)

+ An[(1+v) + aAn]z}

Finally, the substitution of equations (5.20) into equations (5.16)
gives
w(x, t) = = eiwt E a, P (x)[Q,P.(0) + M_P_"'(0)] (5.23)
’ 0'n On *

ns=Q In'n

V(x, t) = - o1t nZO 8108208, (%) [QQP (0) + MgP_'(0)]

Frequency Equations

As indicated in the general discussion, the frequency equation

for the system as a whole may be obtained by requiring compatible
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deformation along the junction of the two shell segments. The

conditions to be satisfied are:

w*(O, t) =+ w(0, t) (5.24)

and -
ax N

The imposition of these conditions on equations (5,11) and (5.23)

results in
- [
MO[Cllf(O) + 0223(0)] + Q0 !Clzf(O) + 0213(0) (5.25)

2 -
+ ) a, P 2(0) 0
n=0

Mo[cllf'(O) + czzg'(O)] *Q (Cppf (0) + C,y8 (0)

|

hing '
2 -
z alnPn (0)’ 0
n=0 -

i
o

Nontrivial solutions for My and Q0 exist if, and only if, the coeffi-
cient determinant for equations (5.25) vanishes. The resulting

frequency equation is

[C;1£0) + Cppg(@)] [Cppf (@) + Cypg' (0] (5.26)
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¢
l N

(J ' 1 1 b ' .
- € E 0 +Cg(0) =5 ] a [P (0]

n=0

; 2
iclzf(O) + C,,8(0) + nZO a P 2(0)

L

Numerical Example

The natural frequencies are calculated for various thicknesses
and lengths of the cylindrical part of the configuration. The
following dimensions and material properties were used for both the

bulkhead and the cylindrical part of the system:
6 2,. 4
E = 30x10" psi, a = 20 in., v = 1/3, p = 0.00735 1lb=sec”/in

The open end of the shell is considered as clamped. The resulting
frequencies are compared to those of a clamped-clamped cylindrical
shell fl]° The results are shown in Tables 2 and 3. The natural
frequencies corresponding to a clamped-clamped cylinder are denoted
by Wy e Qn represents the frequencies corresponding to the present
numerical example,

The effect due to the bending rigidity of the cylinder and
the flexibility of the bottom on the fundamental frequency of the
cylinder may be shown by comparing 91 tg/:E% and ® to Qn’ where
[:g; is the membrane frequency of a cyling:r. The comparison of w

i 2
~N pa
and Qn is 1llustrated in Figures 15 and 16. A typical curve of

S = fa

i



Natural Frequencies for L = 40 Inches

lst Mode

2nd Mode

3rd Mode

0.10239 x 10°

0.10569 x 10°

0,11750 x 109

0.10279 x 10°

0.10775 x 10°

0.12402 x 107

0.10210 x 10°

0.10260 x 107

0.10441 x 10°

0.10216 x 10°

0.10296 x 10°

0,10556 x 109

Table 2.
Frequencies Modes
92
h = l°0 ine
w2
f Q2
gh = 0,4 in,
i mz
i
|
: !
ﬁ P2
"h = 0.2 in, |

0.10206 x 10°

0,10219 x 10

0.10268 x 107

0.10207 x 10°

0.10227 x 10°

0.10292 x 107
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Table 3. Natural Frequencies for H = 0,4 Inches

Frequencies Modes ' 1lst Mode 2nd Mode i 3rd Mode

oy 2

| 0.10287 x 10° 91 0.12354 x 109

]

!

1

" | X
i ' [ !
‘ Q2 i 0.10811 x 10

L= 20 in.

|
5
f
; 0.15791 x 10

9 9 9

w? .0,10395 x 10° . 0.11381 x 10

| ke
T | o]
Q2  10,10210 x 10

' 0.10260 x 107’ 0.10441 x 10°

i

[

| L = 40 in, ‘
| | 9 9 9
; .« 0.10216 x 10” | 0,10300 x 10° | 0.10556 x 10
; = : i
{ @% :0.10205 x 10| 0,10217 x 107} 0,10254 x 10
L =60 in. | , ! I
‘ , ¥ ; —

. «®  0,10206 x 107 0.10222 x 109 0,10274 x 10°

| " acrd
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Figure 15, Comparison of Qg and wrz1 ’

L = 40 in,
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Figure 16, Comparison of Q% and w? ,

h = 0.4 in,
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Figure 17. Typical Curve for S vs Q2

’

h = 0.k in, and L = 40 in.
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Figure 18, Mode Shapes




verans 02 is shown in Figure 17, Figure 1§ shows the first three

mode-shapes.

Conclusions

1. The frequenciés for an elastic cylinder with a hemispherical
bottom are obtained in accordance with the bending theory of elastic
thin shells. Results indicate the changes in magnitude of the shell
system frequencies closely follow the pattern of a clamped-clamped
cylinder.

2. The numerical results also show that the difference in the
clamped-clamped and the present composite shell frequency is greatest
for short cylinders and decreases as the length of the cylinder
increases as shown in Figure 15.

3. For very thin shells, the frequencies of the shell system
are close to those of a cylinder without bottom, and the fundamental
frequencies reduce to the quantitf/izg-as the thickness tends to zero

pa
for both cases under consideration., (See Figure 16).

86



1,

2,

3.

4,

J

6.

7.

87

Literature Cited in Chapter V

Wang, J. T. S., Stadler, W., Lin, C, W., "The Axisymmetric Response
of Cylindrical and Hemispherical Shells to Time-Dependent

Loading," NASA CR-572, September, 1966,

Bhuta, Pravin G., "Transient Response of a Thin Elastic Cylindrical
Shell to a Moving Shock Wave," Journal of the Acoustical Society of
America, 35, 1, January, 1963, pp. 25-30,.

Baratta, F. I., "The Rotationally Symmetric Motion of a Cylindrical
Shell With Various End-Conditions, due to Various Constant Loads,"
Watertown Arsenal Labs, WAL-TR 850/13, November, 1962,

Naghdi, P. M., and Kalnins, A,, "On Vibrations of Elastic

Spherical Shells," Journal of Applied Mechanics, Vol. 29, Trans,
ASME, Vol. 84, Series E, 1962, pp. 16-35,

Kalnins, A., "Effect of Bending on Vibrations of Spherical Shells,"
Journal of the Acoustical Soclety of America, Vol. 36, 1964,

pp. 74-81,

Baker, Wilfred E., Hu, William C, L., and Jackson, Thomas R.,
"Elastic Response of Thin Spherical Shells To Axisymmetric
Transient Loading," Technical Report No, 1, Planning Council,
Southwest Research Institute, San Antonio, Texas, August, 1965,
Coale, C. W. and Nagano, M., "Axisymmetric Modes of an Elastic
Cylindrical-Hemispherical Tank Partially Filled With Liquid,"

AIAA Symposium on Structural Dynamics and Aercelasticity,

August 30 - September 1, 1965, pp. 1969-175,



88

CHAPTER VI
RANDOM EXCITATION OF THIN ELASTIC SHELLS

In 1905, Einstein [1] studied the Brownian motion of a free
particle and obtained the mean-square value of the displacement of
the particle. Uhlenbeck and Ornstein [2] developed the theory of
Brownian motion in 1930, Here the mean values of all the powers of
the velocity and the displacement of a free particle in Brownian
motion have been calculated, and the velocity of a harmonic oscillator
has been obtained by using the Fokker-Planck equation. While most
of the work in the earlier stage is concerned with the Brownian
motion of a one degree-of-freedom system, Van Lear and Uhlenbeck [3]
applied the method introduced by Ornstein and Uhlenbeck to calculate
the Brownian motion mean-square deviation for strings and for elastic
rods. In 1945, Wang and Uhlenbeck [4] developed the theory of reference
[2]hby using the theory of Gaussian random process. Also in this
same paper the contributions to the theory of random vibrations
previously accomplished have been summarized,

The first investigation on the buffeting problem by using
statistical concepts was done by Liepmann [5] in 1952. The response
of strings to random noise fields was studied and compared with some
experimental results by Lyon [6]. Eringen [7], first obtained the
response of beams and plates to random loads in 1956, His work

includes the cases of simply supported bars, cantilever bars, clamped
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plates, and simply supported rectangular plates, Samuels and Eringen
(8] in 1958 studied the response of a simply supported, damped
Timoshenko beam to a purely random Gaussian process. Caughey [9]

has obtained the result that the mean-square deflection at every point
of a nonlinear string is smaller than that for the equivalent linear
string., Crandall and Yildiz [10] have studied the random vibration

of beams by using several different dynamic models such as the
Bernoulli-Euler beam, the Timoshenko beam, the Rayleigh beam, and a
beam which has the shear flexibility of the Timoshenko beam but not
the rotatory inertia. Y. K. Lin [11)] has investigated the response of
a nonlinear flat panel under periodic and random excitation on the
assumption of a dominant fundamental mode. Caughey and Stumpf [12]
analyzed the transient response of a simple harmonic oscillator to a
stationary random input having an arbitrary power spectrum and

applied its solution to the application of earthquake problems.

The response to white noise excitation of a light elastic
string loaded at equal intervals by a number of equal masses is
examined by Ariaratnam [13] using the theory of the Markov random
process and the associated Fokker-Planck equation. Caughey [14]
derived in 1963 the Fokker-Planck equation starting with the basic
concepts of probability theory and then applied this to discrete
nonlinear dynamic systems subjected to white random excitation. By
using the theory of Markov processes anc¢ the associated Fokker=-
Planck equation, the random vibrations of a hinged, axially restrained,
nonlinear elastic beam has been studied by Herbert [15], and the same

approach has been used by the same author in studying the random
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vibrations of plates with large amplitudes [16].

The progress achieved by the large number of investigators
who have studied the launch-vehicle buffeting problem in the four
years of its recognized existence since 1961 up to 1965 has been
reviewed by Rainey [17]. 1In [18], the response of a simple oscillator
to separable nonstationary random noise has been studied by MacNeal,
Barnoski, and Bailie. The effects of transonic buffeting on a hammer
head-shaped payload has been studied by Andrews [19] in 1966. Re-
cently, Peterson, Howard, and Philippus [20] have studied the response
of launch vehicles to separable nonstationary random transonic
buffeting excitation.

The study of the vibration of thin shells acted on by broadband
stationary random loads has been done by several authors [21, 22,
23]. The asymptotic method is used. The purpose of this investi-
gation is to study the response of a thin elastic shell to separable
nonstationary random loadings. Using a matrix differential dnerator,
the general equations of motion for a torsionless arbitrary shell
are written in vector form. The effect of a viscoelastic foundation
is included. The complete solution to the transienf vibration
problem is then sought by using the method of spectral representation
far the unknown variables. Once this solution is obtained, the
dynamic response of the whole system may be obtained in a convolution
integral. The statistical values for the shell, when the shell is
considered to be excited by some random processes, may be calculated.

For the purpose of illustrétion, hemispherical shells with roller~-
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hinged and roller-clamped edges are analyzed when the pressures are

either broadband processes or band-limited processes.

Dynamic Response of an Arbitrary Shell

The general equations of motion of a shell, when the effect
of a viscoelastic foundation is included, may be written as a system

of three linear, coupled differential equations of the form*
*k
(Lgl {ugh = {F ) (6.1)
where [LaB] is a matrix differential operator and where {UB} and

{Fa} are the displacement and generalized load column vectors, ree

spectively, Further

Ju azua
F - + s, 6 02
{ a} kfua Ag ;:g + ph = P, ( )

The effect of a viscoelastic foundation, characterized by an elastic
parameter ks and a viscous damping parameter Ag¢, has been included in
equation (6.2) with the assumption that kg as well as A¢ is the same
in the normal and tangential directions of the coordinate curves.
{pa} is the load column vector.

We employ the method of spectral representation for the unknown
variables. Designating by u, any dependent variable of a solution

state of equation (6.1), we express the variables in the form

*Detailed formulation of this section may be seen in Reference [24].

**%A11 Greek indices range from 1 to 3, and the Roman indices from 1 to
= unless specified otherwise,
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-]

u (Eys Eps B) = 121 9 (8) U €5y, E)) (6.3)
where qi(t) are the generalized coordinates and Uia designates the
dependent variables of a mode of undamped free vibration with a
natural frequency w;, and &g and £, are the coordinates along the
lines of curvature of the middle surface of the shell,

In the free vibration state, i.e., kg = A, = P, = 0 in equation

f
(6.1), the relatior

iwgt

ua(gla 529 t) = Uia(ela EZ) e (6.4)
exists.
Substitution of equation (6.3) into equation (6.1) and then
usins equation {(6.4) gives
I qiu .} ={p} (6.5)
i=1 i ie a
where
d?qy dqy ,
Qi = ph =2 4 Xf et (kf + phwi ) 9 : (6.6)

dt? dt

Using rhe orthogonality condition of the modes of free vibration of an
arbitrary shell with a set of prescribed homogeneous boundary condi=

tions [24], the following relation is obtained:
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3
= 2
é GZI U, Vs 95 = 84y ) v, 2 ds (6.7)

where 61 is the Kronecker delta and S denotes integration over the

3
middle surface of the shell.
Multiplication of both sides of equation (6.5) by the row

vector [Uja] and use of equation (6.7), results in the following

expression for qy:

d2q, A, dgq 'k !

f |
he S SRS I §m£.+ wiZI q = 1. Qi(t) (6.8)
dt2  ph dt \ph / oh

Qi(t) now reads

3
J] I u, Pds
S a=1 la'a
Q(t) = - (6.9
3
] Y u, 2as
S a=1 la

The complete solution of equation (6.8) for the underdamped case

(Af/th)2 < kf/ph + miz is now given by

q;(t) = exp[-Aft/th](AiCos yst+ B,Sin v4t) (6.10)

t
+ (1/phy,) g Q; (1) exp[=Ag(t=1)/20h]Sin vy (t-1)d7
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where

Yy " f(kf/ph) + wg? - (Af/th)z‘% (6.11)
and the arbitrary constants Ai and B, are determined from the initial
conditions.

Peterson, Howard, and Philippus [20] have investigated the
response of launch vehicles to nonstationary random buffeting excitation,
The launch vehicles are treated as simple beams. The general method
of procedure presented in Reference [20] is followed and extended to
shell problems. The loads on the shell are taken as the following

sample functions of distributed nonstationary random processes :

*

K
( )(Elaizgt)} = P14(E1082st) {pza(K)(El,Ez,t)} (6.12)

{py

where pla(cl,zz,t) is a known deterministic function of 51,52, and t}

and pZa(K)(El,Ez,t) is an element of a stationary Gaussian random process
which has zero mean value, cross power spectral density Gau(w,al,zl';
52,52'), and the cross-correlation function Fua(r,el,cl';sz,gz') for

each of the P, specified in equation (6.12).

While the stationary random process {pza(K)(Elgiz,t)} is generated
by the excitation of some physical phenomenon, the deterministic function
pla(El,Ez,t) is governed by the amplitude of the excitation.

For simplicity, let us assume the shell to be initially at

rest, Equation (6.10) becomes

*{++e+} represents now the ensemble of each of the elements indicated
by the superscript (K).
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t
q (t) = - J Qi(T)exp[mlf(t@T)/th] (6:13)
phy, O

° Sin yi(tmf) dr

The ensemble of responses can be written now as

(

(} K - T ’ (K) \
v, B (g ,6,,0) 121 @y () Uy (E,E)) (6.14)
© U; (£14&9) t. ;
-yt 1,

i=1 phyi 0

¢ exp[-xf(t-r)/th] Sinyi(t»t)dt

and
P ® |
\ L LU ey (6uEpat) ( dS
@, Semt 1% |
<Qi (t); = T (6.15)
| | [ 1 ug s
/ S a=1
Using the assumption equation (6.12), equation (6.15) takes
the form
3 ]
(K) |
j ) : £ uzl Uiapla(el’EZ’t) (qu (EI’EZ’t); ds
! K . ot 4 : b
EQi( (t), = 3 \(6.16)

J u, 2ds
S azl 1a
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Substitution ot equation (6.16) into equation (6.14) leads to

(K) . - T
Uy (E1s8yst), = 121 ia 2 I f Ugqo(E14Ep) (6.17)

N

i
!

! K
*Pl(EaEpet) rpg

(610875t

* exp [-Xf(tnr)IZQh] Sin Yi(t-T) dsdr
with

Via ™ Vo E1082)

phy, [ U, 2ds
is azl 1a

We are now ready to calculate the statistical quantities for the

shell response,
a. Mean value of response

The mean value of {Ua(519529t)} is an ensemble average over

UQ(K)(Elsﬁzst)z
v ® ) = E v § ftf U, ( ) (6.18)
N 51.52.£:>> Ly Vel DU .

. pla(gl’gzﬂ:) @a(x)(51:520t>
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exp[-Af(t-r)/th] Sin yi(t-r) dSdt

Since the mean value of pz(sl,ez.t) goes to zero by assumption and

from equation (6.12),

K T -~ (K
"'Pa( )(EIOEZDt) o= P1(€1.€2,t) <"f4P2“( )(Elsazot) - (6.19)
=0
Thus,

(R T

.;U.a (EI.EZ,F) 0 (6.20
b. Cross-Covariance of Response

Since &;da(K)(El,Ez,g)”» = 0, the cross-covariance of the

response must equal to the cross-correlation., By definition

(K) (K)

Tag(Eat i8 a8y 5850870 = <UL (810600 ®) U, (6) 56, 0" 5 (6.20)
or by using equation (6.17), equation (6.21) reads
T e s ! - v ! ! 6.22

tt'

o g é é [, UiatE108)) Uygley"a8y ")
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7 (K)
pf’-a(sl’zzjt)plﬁ(gl"52"t') < PZa (El.Ez,t)

°

. (K)

Pg (51',52',tf)‘/ exp[-Af(t-1+t'-1')/20h] Sin Yi(t-T)

* Sin Yj(t'-r') ds'dsdr'dr

(K)

Using the assumption that P2q (El,az,t) is stationary gives

(£15855t) pzs(x)<zl',52',t‘)'> =] G(wig148,'36,06,")  (6.23)
0

. (K)
. p?a

* Cos w(t=1") dw

(K)

where G(w) 1is the power spectrum of {pza (El,zz,t)} .

Substitution of equation (6,23) into equation (6.22) gives
3 3

RPN CGRANAY 1 321 (6.24)

I o (tyt'5E £ "36 ,8,") = |
af 1°~1 2°%2 1=1 §=1

tt' o

’ ;é g I é I Uia(€1952) U (51'962') pla(sl’529t)

* 0 jB
" P1g( T8, st") G(wig) 48y "3850E)") Cos w(t'~1")

o exp[-xf(t-t+t'-1')/2ph] Sinyi(t-t)Sinyj(t'-r')dwdS'det'dtf

Since all physically realizable processes involve power

spectra which go to zero for sufficiently high frequencies, the
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requirement of physical realizability in the present case is that

f G(w)dw < = (6.25)
0

and hence the integrals involved ir equation (6.24) are convergent,

The order of integration may then be reversed to give

(t,¢t ' Ya 1 &y &0 ; E (6.26)
Pty 8,6 3Ep06p ) = Vo Vo 6y sE2) ) .
@B T T2 T gl gm0 deTL 2 L e
s v,
T [ vyateeep )
¢ U E.3E5)P, (E 4Eqst
obho g VettrtIPe Gt

( w
¢ ¢ ' ' o ' ' . '. ' '
[y U.gCE) 483 IP1g(E) 4By 4t IG(wiEy,E) 36546, )dS
]
© dS | Cos m(r'-r) exp[-Af(t~r+t -1')/20h] Sin yi(t-r)

\
' |

* Sin v, (t nr') dr'dt I dw
3 i

1

/

The double surface integral over S and S' resolves the time~

dependent CPSD of the excitation into the time-dependent CPSD of the
excitation of the i~th and j~-th modes.' The double integral over 1

and T' then yields the>time-dependent CPSD of the responses in the

i=th and j~th modes. The integration over w gives the cross-covariance
of the modal response; and finally, the double summation over the

modes gives the cross-covariance of the response*

*See Reference [20].
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Consider the particular case when plu(Elbgzgt) = pla(ﬁl,ﬁz),
i.e., when equation [6.12) represents a stationary random process,
1 )
Furthermore, G(w,£19£1 $E9089 ) = G(w). For the time-dependent,

normalized, cross=correlation function, one has

3 3
op (s B E9E13E5,E)) = Z Z v P (6.27)
’ 1°°1522%) iljliujBinK el g1
]
’(AKGAKBO 2(t)
where
P1a(Epsgy) = x§1 AUk o(Eq0E) (6.28)

has been expanded in terms of the orthogonal function UKa(El’EZ)' AKa

is the normalization factor, and in equation (6.27)

wtt . v,
02 = [ [ ] Eiﬂ% Cos w(t =1) exp[=Ag(t-t+t -1')/2ph] (6.29)
000 v, |

[

]
Sin yi(t-T) Sin Yi(t-T )dT'dew

represents the normalized variance of qi(t). Equation (6.29) is
particularly interesting, since it is similar tc the variance 5f the
harmonic oscillator obtained by Caughey and Stumpf [12]. In fact, the
two become identical if we set fuwy = Xf/ZQh and W) ® Yy Integration

of equation ($,29) gives
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'™ A A /Oh
0 2(t) = [ L 4, exp(=(A /on) ] ¢ 1 + L (6.30)
0 |Z(w)|2 7_ ‘ Y4

®

Sin yit Cos vyt - exp[Rf/th)t] 52 Cos vyt
\

A

Af/ph 1 2w
+ Sin y;t- Cos vt - exp[AfIth)c] ==
Yy . 1
(Af/th)z-yiz-l-mz .
* Sin y,t Sin ot + smzyit : dw
2 .
Yi i

where

C 1
|2 [2 = (A/200)2 + o2 - v,2 + (wrc/ph)2
Some of the properties of oqz(t) observed in reference [12] are:
(1) Ast =0
2
o t) »0
q (v)
(2) Ast +o
o 2t » [ Slwde
1 0 |z(w|?
The integration of equation (6.29) may be done analytically,
numerically, or approximately, depending on how the power spectrum
is given.
Once the geometry of the shell is known, and if the orthogonal

functions uia(gl,az) for each o are given, equation (6,27) is completely
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defined by knowing the deterministic function from the input data and
the power spectrum for the particular stationary Gaussian random
process. Consider as a special example, the hemispherical

shell subjected to the presently defined separable nonstationary

random process.

Axisymmetric Response of Hemispherical Shells

Consider that the viscoelastic foundation is absent in the
present analysis so that the previously obtained result for the
dynamic response of a hemispherical shell may serve the purpose here.
The governing differential equations for the hemispherical shell
have been solved in terms of the normal modes fror equation (4,31)

to give

u¢(x,t) - - z ¥n(t) P (x) V1-x?
n-2,4900
or
n-1,3,5’00
w(x,t) = z wn(t) P (x)
n'0,2,4..e

or
n-1,3,s.os

where n = 0,2,4,.. corresponds to the roller-clamped boundary case, and
n=1,3,5,.. corresponds to the roller~hinged boundary case. Prime
denotes differentiation with respect to x, and Pn(x) is the n=th

degree Legendre polynomial. Referring to equations (4.19), (4.26), and

(4.29), wn(t) and wn(t) are the following:
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For n = 0O,
At 1
wo= =2 [ sinu, (t-1) [ P(g,7) agar (6.31)

wo has been neglected , since it contributes nothing to the displacement

]
u, due to the fact that PO (x) = 0, Here

-, a21-v?) 2(1-v) | 2 (6.32)

a is the radius, h the thickness, p the mass density, v the Poisson's
ratio, and E is the Young's modulus.

For n =1,

t
¢l(t) =01 / Foy (1) 8in w _(t-t)dr (6.33)
30 |w, O 11
tr , '
- é é Fll(r )dt dt
t
wi(t) =L 0 2. [ Fp (1) Sin g, (t-1)dr
3 |w; O
tr

+ [ Fo(x')ar ' ar
!

where
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1 : 1 ¢(8)
11 = 34 é P, (E,1)P, (£)dE = 2 é Py (8) { Py (¢57)dodE (6.34)

1 1 ¢ (&)
Fyy = 3A, é Po(E,T)P (E)AE + £ P1(8) é P, (4s7)dods

For n > 2,
(

. . |
- 1 ' -
wn(t) 4-—1_{) Sinw, (t-1) Fln(t)dt (6.35)

22 (wan-wlnz) Wy

A

N

%

; |

- —L.f Sin w, (t=1) Fy (1)dr,
wzn 0 '

, |
; |

e

1 J 1 t
w (t) = ( === [ Sin w, (t=1) F, (1)dt
n ‘2(“2n2f”1n2) lmln 0 In 2n
]k )
1 1l
- == [ sin mZn(t-r) an('l.')d‘t
Won 0
here
[
P = A mD) (AL + 2 S5 +e
= 4+ )\ - a
1D = A A ({ P, (£) (I) Py(8s7)dedE  (6.36a)
]
|
1 .
- [uAn + (1+v) ] é Pd(E.r) Pn(i)d£§
» l- d2 i
Fan(t) = A, (20+1) [A_ = (l=v) + A S=
. n dr?
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’ g pn(é,r) Po(8)dE + A jlar  + (1+v)]

1 ¢(¢) !
“ P (€) / p¢(€,T)d¢dT>
0 0 ,

- 1
2 2 4. | 2 2
W 5 jAln + (Aln - hAzn) (6.36b)
5
2 = 1 2 2
wln = o A1n - (Aln - hAen)
An = n(n+l)
with
Aln = aAn[An - (1-v)] + An + (1+3v)
Apn = alA (A = 1#v)2 = 0?23 = 2aA 2(14v)]
+ (1-v?) [An- 2]
Agp = oh (A = 1+v) + 2(1+v)
_L. (a)g
a =
12 |a
Equations (6.12) take the form
j (K)(s t)L =. (g,t) ; (K)(s t)i (6.37)
P¢ ’ { pl¢ ’ 1 P2¢ » e

!

LN

|
N




(K)

{pn (g,t)}

for the present case.

- Pln(ist) {pzn

®) (g,e9)

The statistical quantities are

a, Mean value of response

Equation (6,20) is now

qfﬁ;(K)(xggs" = 0

& (6

o =0

which may be obtained directly from equations (6.31) to (6.36).

b, Covariance of Response

The correlation functions for the displacements u¢(x,t)

and w(x,t) are

Fuu(t,t';xgx') -

T (tet'ix,x") =

Tuw(tst'ix,x") =

n=2,4,6,..
or
n=1,3,5,..

n=0,2,4,..
or
n=1,3,5,..

I n®ov®ey prer w

n.2,4;¢e
or
n=1,3,5,..

3P0 ® ey p e

. N 2
AT ORI DR X

2
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(6.38)

(6.39)
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The correlation functions <<6;(K)(t) wn(x)(tfﬁ;ﬁ R :f:;n(x)(t)

- TN
. wn(K)(tv)‘ . and pAwn(K)(t)wn(K)(t')ﬁ> are obtained by using
equations (6.32), (6.33), (6.34), and (6.35).
For n = 0,

(K) g1y (6.40)

L
-
-

:’QO‘K)(:)wO

A 12 et
- / é Sin wyg(t=1) Sin w, (t'-1")

(K)

. 11 . (K) .
*fg [ P16t By (6'5T") < Pop (B4 byt (6T, T
0 0 h :

* dg'de dt'dr;

i

For n = 1,

A CIA I (6.41)
DY S S : .
(33)2 L9112£ [ sin wyy(e=1)Sinuy, (t'=1")  F,  (DF, (1)
(T + D
¢ drdr! - == Sinw; (t=1) F, . (1)F. . (n')> dn'dr'dr
wp 00 0 1 ~217
tt T
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O
Qt—

tt Tt ' ' '
+ é £ Fll(")Fll(n;i:> dn dndt d{}

<:E;(K)(t)wl(K)(tiz:>

= 1 _ '-' t
o7 [jwllz é é Sinwll(t t)8inw, (£ -17) <:§é1(T)F21(T;E>>

t t' r'

*dr dt + o é é / Sinwll(t-r) F21(T)Fll(niz>>

"
» dn'ar'ar + 2= f f f Sinwll(t'—f') F21(T')Fll(éj>>

t' <
Fyq(n)F, (n')> dn'dndr a
gé <ll 11 > n dnat ‘El

dndr 'dr + f f
00

where

oy (1)Fpy (') (6.42)
11 ' .
= (38)2| [ [ r_, P(g)P (g )agag

16"

+ é g £ Tyep Py(E)P (£ )asag'as

16'(e") ok)

oy
000 0

otn Pl(g)Pl(a')d¢'d¢ds'd£}
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Fel(T)Fll(Tiz:>

11 :
(34,)2 é é Tt Pp(€)P (2" )ag ag

11 ¢(g) \ '
+J 1] Fynt Py(£)P; (£ )a0dg ag
000

116'(") v
-2 [ [ Tyrn P1(8)P (£ )ae ag ag
000

11 ¢(g) ¢' (")

-2 Iy P, (E)P,(E")dsas ag'ae
[ e omtus

<:f;1(T)F11(TiZ>>

r

11 ' '
= (3A1)2[_£ é Fope Pp(E)P(E7)agdE

11 6'(g") C
-2[]] Ty'n P, (g)P, (£ )¢ de ag
000

fljlf¢(€) (£)2, (¢ )agag
-2 r ., P.(g)p, (g )a¢dg 4
000 ¢n' 17271

11 ¢(g) ¢'(g") o
+u ][] Tgnt Py(E)P (£')a¢ dsag’ar
000 0

with
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e

Ton' ™ P (s.t)pn(e',t'z/;> , T

n ' - 4#5'»")":1“'?‘)?

$n

e

Tyt = Py(ErtIp (8'st')>

For n > 2,

<:§p(x)(t) wn(x)(tiit> (6.43)

- i e [ Sinw), (t=1)Sinw; (t'-1')

]
. 5 ® (K) oy~ €t
LF@E @) a0 stnu

ln(t-r)

S inw2n ( t ' -T ' ) k/j/Fln (K)

(K)

'y '
(T)Fln (T’") > dt'dr

tt' .
-l ({f Sinmzn(t-1)81nw1n(t'-'t') (:/F (K)(T) Fln(K)(T§>

Wiy 0 0 ~1n
t t'
cdrtdr + =Ll [ Sinwyy(t=1)Sinw, (t'-t')
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The expression for <i§p(K)(t)wn(K)(tii>> can be similarly obtained.

Here

<::;R(K)(t)F (K)(tj§)> (6.4k)
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e (K) 11 ¢(8) ¢"(&")
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n n 000 0
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Since the substitution of equations (6.37) into equations (6.44) leads to
rather lengthy expressions, we shall consider equations (6.39), (6.40),
(6.41), (6.42), (6.43), and (6.44) to be complete for the present

purpose.

Numerical Example
For simplicity, let the roller-clamped hemispherical shell

be subjected to a uniformly distributed nonstationary random process of

the following form:

(K) '

i
Py (xyt), =0 s, 0<t<T (6.45)

: pn(K) (x,t) . - pln(t) i pzn

(K)(c)‘, ’ 0<t<T

Equations (6.45) indicate :hat the random process is uniformly
distributed over the shell surface, and perpendicular to the middle
surface of the shell only. One such application for this dynamic
model is that of the hemispherical nose of a space vehicle subjected
to the transonic buffeting pressure.

Knowing that
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Po(x) =1 (6.46)

one sees immediately that only the breathing mode is excited by this
process.,

The covariances of the response are

<" (K)

- PN

(x58) u )> =0 (6.47)

¢
V(K)(X,t) W(K) (x' ,t'>

‘ w;)(K) (&) w, (c")>

/ A V2 et
- | Sinw, (t-1)Sinw (t'-t")
o/ 00 10

* P (P (T) \"ézw(K)(T)pr(K)(1,2';‘) dt'dr

Using the assumption that the random process is uniformly
distributed over the shell, equation (6.23) gives

(T'??g = [ G(w)Cos w(t-t') duw (6.48)
- 0

(K) (K)

()’.pzn (T)pzn

where G(w) is the power spectrum of {pzn(K)(t)}

Substitution of equation (6.48) into the second equation of

(6.47) gives

(K)

@ x,8) v (x', e~ (6.49)
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L) [( | Sinmlo(t-r)SinwlO(t'-T')

Awlo 00 O

_ ( AL \2 tt' e
\

/

. pln(r)pln(r') G(w)Cos w(r-r') dwdt dt

Let the excitation pzn(x,t) be of the following two different

types:

a. A uniformly distributed broad-band white noise-

- ,w2>0
Mw) = T (6.50)
0 sy W <O

Equation (6.49) takes the form:

~~
(@Y
o
\n1
)
S’

]
T (tst X% )

DAl . t
- 2
¥ Coswlo(t t) é Pln (1)dr

(e

t

Cosw, (t'+t) [ »p

14T
10 0 1

2
0 (t) Cos 2w) o

t
'
Sinwlo(t +t) g pan(r) Sin 2w, Tdt

It is assumed here that t' >t., For t' = t,one has the mean-square

value of response
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DAl2 t
| pp2(r) dt (6.52)
2 10
(Awlo)

0, 2(t)

t

2
Cos 2w10t g 1 (1) Cos 2w, 4TdT

t

2
8in 2w, t g Pin (t) Sin w, ,TaT

b. A uniformly distributed band-limited white noise

GO’ - 2w10 <w < 2w

Glw) = ¢ 10 (6.53)

o, !wl > 2mlo

\

Equation (6.47) becomes

'
Fww(t,t';x,x ) (6.54)

Al 2 t t .
= - Gy £ é Sin wlo(t-r) Sin wlo(t -1 )
%0
]
* by (1) py(t') Stal2a® = e
pln pln t' &

|}
Again, it has assumed that t' >t, For t = t, the mean-square

value of the response is

A 2 t t
owz(t) = 1 2G4y £ é [Sinwlo(t-t)]z[pln(r)]2 drdr (6.55)
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Consider the mean-square response with the above two different

types of power spectra accompanied with the following forms of
deterministic functions:

a. Sinusoidal modulation:

P (t) = Sinawgt, 0<t <T (6.56)
Case 8
DAl2 a2w02
0. 2(t) = t + Sin 20, .t (6.57)
v 2(Awya)2 107 5y (wq 2=a?w . 2)
10 10710 0
2
w
- Sin 2aw t io —
2am0(wlo -aw, )
Case b
A 2 w
10
0, 2(t) = [=E=| 26w, { == Sin auw t (6.58)
Aw 0 —aly Z24p, 2 0
10 0 10
aw 2
10 0

b. Constant modulation:

pln(t) =aw, , 0<t<T (6.59)

Case a
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DA 2(12(.0 2 Sin 2(&)1'01.'...l
owz(t) - 2: £ = e | (6.60)
|
(Amlo) 2w10 |
Case b
L a2w02
g 2(t) = | =] 2G.w [Cos w .t = 1])2 (6.61)
W A 0710 2 10
“10 “10

The above obtained mean-square responses have the following common
properties:
(1) as t +0
0,2+ 0

(2) as t +0

2 (@2) » 0

ot
Note here that the root-mean-square response, which is
denoted by RMS response, is the square root value of each of the
mean square responses,
Numerical results are plotted in Figures 19 through 22 by using

an electronic computer with the dimensions and material properties of

the shell as

v-u31-, E=30x10°% , a=100 in,

Conclusions
(A) Random excitation of thin elastic shells has been studied

by using a modal analysis. Numerical results are obtained for
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hemispherical shells with roller-clamped edges subjected to non=-
stationary separable random processes uniformly distributed over the
shell surface. The white noise spectral density applied in the
calculation is to simulate the load on a hemispherical shell nose of a
space vehicle when experiencing the transonic buffeting pressure
during the flight. For this type of hammerhead payload, flight

data from a Atlas-Able V model shows that the fluctuating pressures
tend to produce nearly constant power spectral densities over a low-
frequency region. However, in order to provide a general view, the
wide band distribution of the PSD is also included in the study.

(B) In an actual dynamic loads problem, the choice of the
deterministic function depends on knowledge of the actual excitation of
the vehicle. This knowledge would come from wind tunnel data, flight
measurements, an estimate based on practical exper?ence, or a
combination of these. The analysis carried out fof a hemispherical
shell gives one a better insight into the shell type of problem and
provides one with a general view of the effect of different types

of deterministic functions,
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